

NAVWAT - Future High Precision Navigation System for Inland Waterways

Christoph Amlacher, via donau

Workshop: Danube Strategy & Space Technologies Brussels, 16.06.2011

NAVWAT

- Concept Study investigating new applications for future GNSS systems
- Funded by the Federal Ministry for Transport, Innovation and Technology through the

Austrian Space Application Programme, 6th Call

- Partners: via donau (lead), TeleConsult Austria
- Project Duration: April 2009 March 2010

Project Goal

- Identify inland waterways applications that
 - benefit from high accurate positioning services
 - provide an operational benefit (safety and/or efficiency) to ship users
- Propose a technical solution
- Derive requirements for future GNSS systems

River Information Services

 Directive 2005/44/EC on harmonised River Information Services (RIS):

... **optimising the use** of the infrastructure and

... improving **safety** on European waterways.

RIS on the Danube

Current problems

• Collisions with infrastructure

Current problems

• Collisions with infrastructure have often severe secondary effects (example: railway bridge)

Current challenges

- Need to improve tracking & tracing technologies:
 - Shape of vessels not displayed accurately (especially for barge convoys)
 - Position information lacks accuracy & integrity

AUSTRIA

viadonau

Application Scenarios

- Three scenarios that require high accurate GNSS
 position information
- They represent the situations with high risk of collisions with infrastructure
 - Approach to river lock
 - Passing a bridge
 - Approach to riverside berths and ports

Scenario 1

Approach to Lock

- Difficult maneuver with only limited space available
- Effects of currents and wind

Scenario 2

Passing a bridge

- Narrow corridor to pass at full speed
- Vessel needs to be aligned well in advance

Scenario 3

Approach to berth

- Accurate guidance required
- Effects of currents and wind

User Community interviews

- Early involvement of user community is important
- Have been considered in system design
- User feedback
 - Position information should be reliable
 - Modeling of convoy shape shall require minimum interaction
 - Try to avoid fixed installations on barges (reasons of theft)
 - Integration with existing Hardware/Software onboard
 - Different requirements for convoys and motorised cargo vessels

Identified Challenges

- Modeling of convoy shape
- System architectures that meet the specific needs
- User Terminal Design

System Design Highlights

- Three System Architectures
 - SA 1: Large convoys
 - SA 2: Small-medium convoys
 - SA 3: Individual vessels
- Innovative concept for convoy shape determination
- Integration of Inland ENCs containing information on river infrastructure
- Integration into RIS Concept through
 - Provision of accurate position and heading information (improved Tactical Traffic Information)
 - Automatic update of convoy size in Inland AIS transponder

Modeling of convoy shape

Operational constraints

- Cargo transport is often done by barge convoys
- Modeling of convoy shape is complex
- Users comment: Automated approach required

Modeling of convoy shape

Modeling of convoy shape

- Definition of
 reference points at
 characteristic corners
- Semi-automated definition of a mathematical shape represented by the reference points

User Terminal Design

viadonau7

TeleConsult

AUSTRIA

Barge units:

- Removable
- Robust
- Waterproof
- Battery
 backup

Specific challenges for GNSS in the inland waterway environment

- Signal shading by topography and infrastructures
- Frequent signal blocking when passing under bridges
- Limited reception of augmentation signals from GEO satellites
- High multipath effects in the vicinity of infrastructures

Requirements for future GNSS

GNSS Systems analyzed

- GPS including the GPS modernization process
- GLONASS including the GLONASS modernization process
- Galileo including not only L-band but also potential C- and Sband signal extensions
- Other GNSS systems like the future Chinese COMPASS
- SBAS systems including future evolutions like WARTK
- Conventional DGNSS systems including RTK
- Virtual Reference Station DGNSS
- Precise Point Positioning technologies

Requirements for future GNSS

Candidate Systems

- GNSS
 - GNSS system of systems (GPS, Galileo, etc.)
- Augmentation
 - Future SBAS with WARTK
 - Virtual Reference Station Network solution

Feasibility of pilot implementation using current GNSS infrastructure

- Implementation feasible using conventional RTK system
- Key innovative parts can be demonstrated
 - Convoy shape modeling
 - Protection level computation (Integrity information)
 - Integration into RIS architecture (Inland AIS, Inland ECDIS)
- Demonstration to users would enhance the desired user acceptance – accelerated product roll-out when the necessary GNSS infrastructure is available
- Product introduction could immediately start when new GNSS services are available

NAVWAT 2 is ...

- **Pilot implementation** of the NAVWAT Concept.
- Funded by the Federal Ministry for Transport, Innovation and Technology through the

Austrian Space Application Programme, 7th Call

- Partners: TeleConsult Austria (lead), via donau
- Project Duration: Jan. 2011 June 2012

NAVWAT 2

Status:

- System design and development ongoing
- Pilot system to be tested in a real-life environment on Austrian Danube in spring 2012

Related Activities

- **ARIADNA** Maritime Assisted Volumetric Navigation System
 - Development of innovative navigation solutions for management of vessel traffic to avoid human error in navigation and to improve efficiency and safety.
 - Focus:
 - Collision avoidance vessel-to-vessel and vessel-to-infrastructure
 - Representation of vessel shape and risk area (ship volume)
 - Programme: FP7, THEME 7: Transport (including Aeronautics)
 - Project duration: Nov. 2009 Oct. 2012
 - http://www.ariadna-fp7.eu/

ARIADNA

Related Activities

Conclusion

- Collision avoidance is a topic still to be exploited
- NAVWAT identified three applications scenarios
- Highly accurate positioning information is a prerequisite
- Operational constraints & needs have been accounted for
 - Modeling of convoy shape
 - Mounting restrictions on barges
 - Integration into RIS architecture is a must
- Future GNSS and augmentation system requirements have been identified
- Pilot implementation with current GNSS infrastructure will be realized in the follow-up project NAVWAT 2

NAVWAT Point of Contact:

Christoph Amlacher via donau – Österreichische Wasserstraßen-Gesellschaft mbH

A-1220 Wien, Donau-City-Straße 1 Tel +43 50 4321 1608, Fax +43 50 4321 1050 christoph.amlacher@via-donau.org, www.via-donau.org

http://www.navwat.at/

