

Copernicus

Mauro Facchini
Head of Unit Copernicus Sevices
DG Enterprise and Industry
European Commission

Outline

New Multiannual Financial Framework 2014-2020

Horizon 2020

Space Research

- GNSS

- Copernicus

- Other

1,4 bn€

6,3 bn€

3,8 bn€

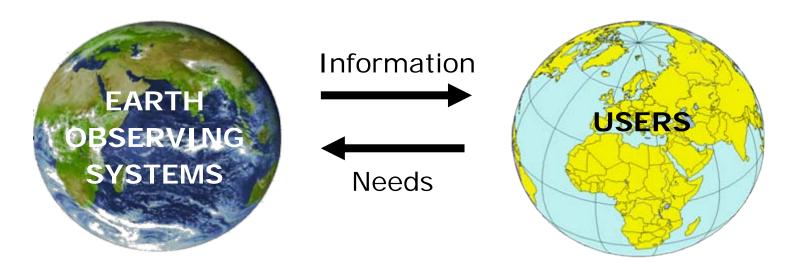
**

Tot 12 bn€

Outline

· What is Copernicus?

Governance, financing, legislative basis


Some concrete applications: from core to downstream

Objectives

1. To provide information services to policy-makers and other users

2. To strengthen the market for downstream products and services!!!

- The Copernicus programme is designed to ensure:
 - An uninterrupted provision of accurate and reliable data and information on environmental issues and security matters
 - Users in charge of policy making, implementation and monitoring, in the EU are supplied with the information they need to do fulfill their tasks
 - Commercial applications that exploit environmental data are stimulated to invest and flourish through a full, free and open Copernicus data policy

six Copernicus services are necessary to meet user needs

Earth monitoring

Land Monitoring

Marine Environment Monitoring

Atmosphere Monitoring

Transversal services

Emergency Management

Security

Climate Change

6 services need Earth observation data to make...

contributing missions

in-situ

...added-value products

6 services need Earth observation data to make...

contributing missions

esa

FRONTEX

EMSA

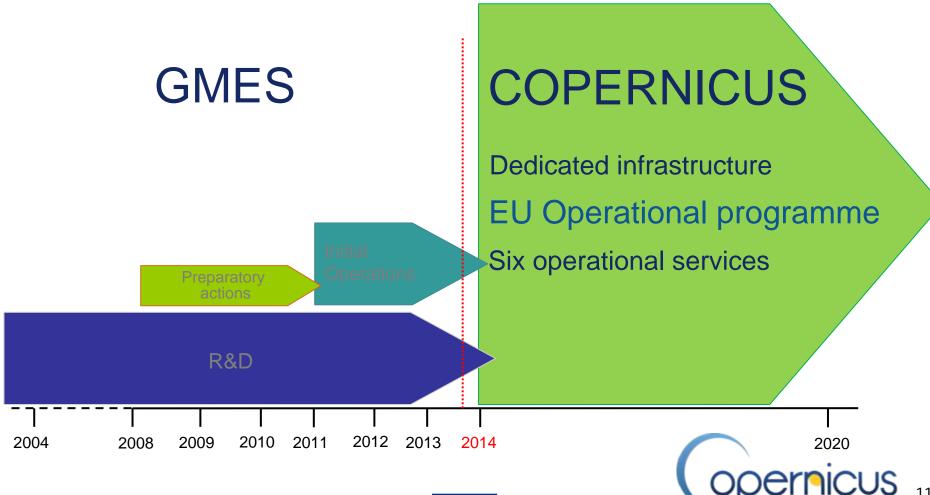
...added-value products

Outline

· What is Copernicus?

Governance, financing, legislative basis

Some concrete applications: from core to downstream



GMES/Copernicus evolution

- Global Monitoring for Environment and Security:
 - predecessor of Copernicus until 2013/2014
 - established by Regulation (EU) No 911/2010
- Until end-2013: funding for GMES from
 - GMES Initial Operations (GIO) 107 mio EUR
 - FP7 funded pre-operational projects
- From 2014:
 - Copernicus operational phase
 - funding from 2014-2020 MFF: €3.8 Bn

GMES/Copernicus evolution

FP7 GMES Projects overview

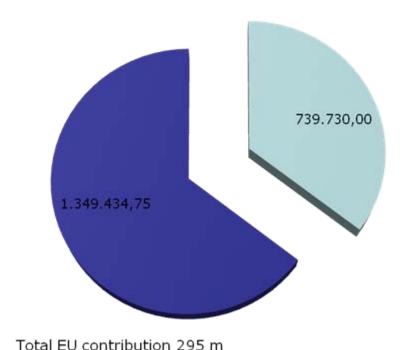
79 GMES projects from 2007 to 2012 FP7 space calls, of which 57 Downstream projects.

_	
_	na

- Marine
- Atmosphere
- Emergency
- Security
- Climate Change
- Specific support actions

Total		D/S
Euro	53 m	Euro 23 m
Euro	90 m	Euro 57 m
Euro	44 m	Euro 8 m
Euro	49 m	Euro 16 m
Euro	34 m	Euro 10 m
Euro	19,5 m	Euro 16 m
Euro	5,5 m	

• Total EU contribution:


GMES/Copernicus

Projects overview

		Land	Marine	Atmosphere Atmosphere	Emergency	Security	Cl. Change		
FP7	Core	GEOLAND2	MYOCEAN* MYOCEAN2	MACC* MACCII	SAFER*	GMOSAIC*			
Projects	Service Evolution / R&D	BIO_SOS MS.MONINA ISAC MyWATER SIRIUS GLOWASIS IMAGINES** LOTUS** GLASS** SenSyF**	MYWAVE OPEC OSS2015 SANGOMA	NORS	LAMPRE** IncREO** SENSUM** PREFER**	G-SEXTANT** G-NEXT** SAGRES** LOBOS** NEREIDIS DOLPHIN SIMITYS	EURO4M MONARCH-A CARBONES ReCOVER REDDAF		
	Downstream applications	CRYOLAND FRESHMON EUFODOS	FIELD AC AQUAMAR ASIMUT COBIOS SeaU SIDARUS	PASODOBLE ENDORSE	EVOSS DORIS SubCOAST PANGEO GeoPICTURE*				
GIO	Operational Services	GIO Land			EMS-Mapping EFAS				
	***Under negotiation ==								

State of play: participants from Puglia EC contribution in FP7 EO projects – call 1 to 5

- Total EU contribution to Reasearch organisations and University
- Total EU Contribution to SME

Project Participants

Centro Euro-Mediterraneo Per I Cambiamenti Climatici Scarl

Planetek Italia Srl

Universita Degli Studi Di Bari "Aldo Moro"

Copernicus Regulation

- EP and Council are currently discussing the Commission proposal for a Copernicus Regulation

 it should enter into force mid-2014
- Regulation describes the objectives of the programme, the governance and budget for 2014-2020.
- Copernicus budget is EUR 3,786 million (2011 prices), pending approval of the EU 2014-2020 multi-annual financial framework

Copernicus Data Policy

- The Copernicus data policy is adopted via a Delegated Regulation
- This policy promotes the access, use and sharing of Copernicus information and data on a full, free and open basis
- One of the main objectives is to support downstream segment and research, technology and innovation communities
- The European research institutes will be able to make the best use of these data to create innovative applications and services

Cost-Benefit analysis

- A cost-benefit analysis was conducted taking account of the Copernicus funding from MFF (€3.8 Bn => an average of €541 Mio per year)
- Cost per EU inhabitant will be ~€1.07 per year
- For every €1 spent we get a return of ~€3.2
- An estimated <u>minimum</u> of ~48,000 jobs will be created

Cost-Benefit analysis

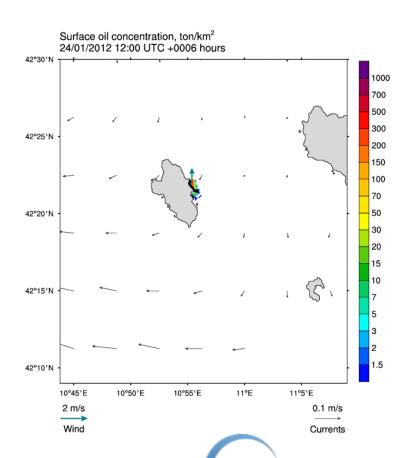
- Using a system dynamics model, the FeliX model¹⁾, cumulative benefits could increase further by a factor of between 5 and 10
- This could lead to benefits by 2030 in the order of €200 Bn
- So Copernicus will result in benefits many times larger than the EU investment
- 1) The Felix Full of Economic-Environment Linkages and Integration dX/dt system dynamics model takes into account the complex relationships between natural and socio-economic systems

Outline

· What is Copernicus?

Governance, financing, legislative basis

Some concrete applications: from core to downstream



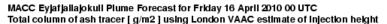
The daily forecast of oil spill scenarios from Concordia

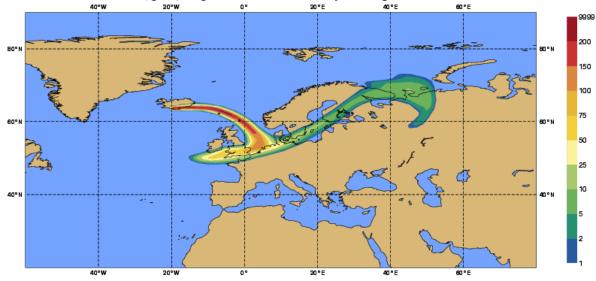
The ship contained 2500 Tons of oil (API 17) which are supposed to spill out in 72 hours

6:05 PM

North Pacific

MyOcean iPhone app





Volcano Eyjafjallajökull case

Launched for 2012 Olympics, London

Japan tsunami

Italian earthquake

European Commission

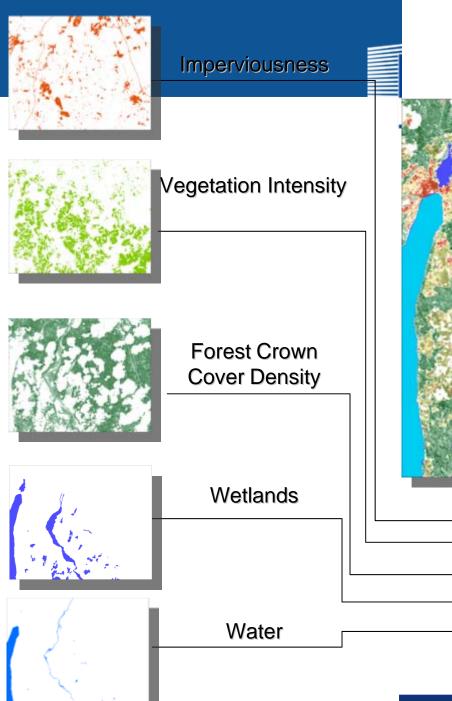
Transportation

Primary Road

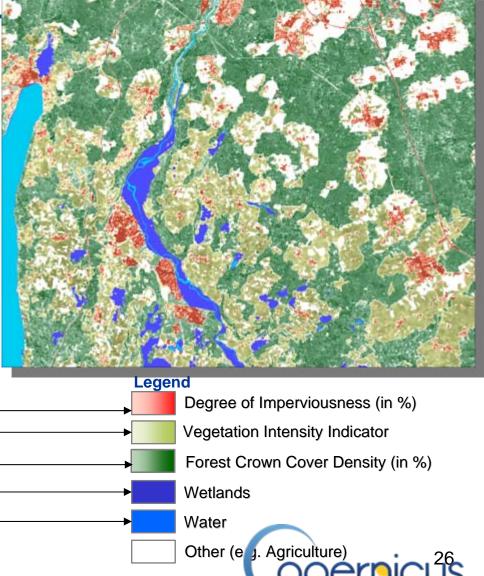
Secondary Road

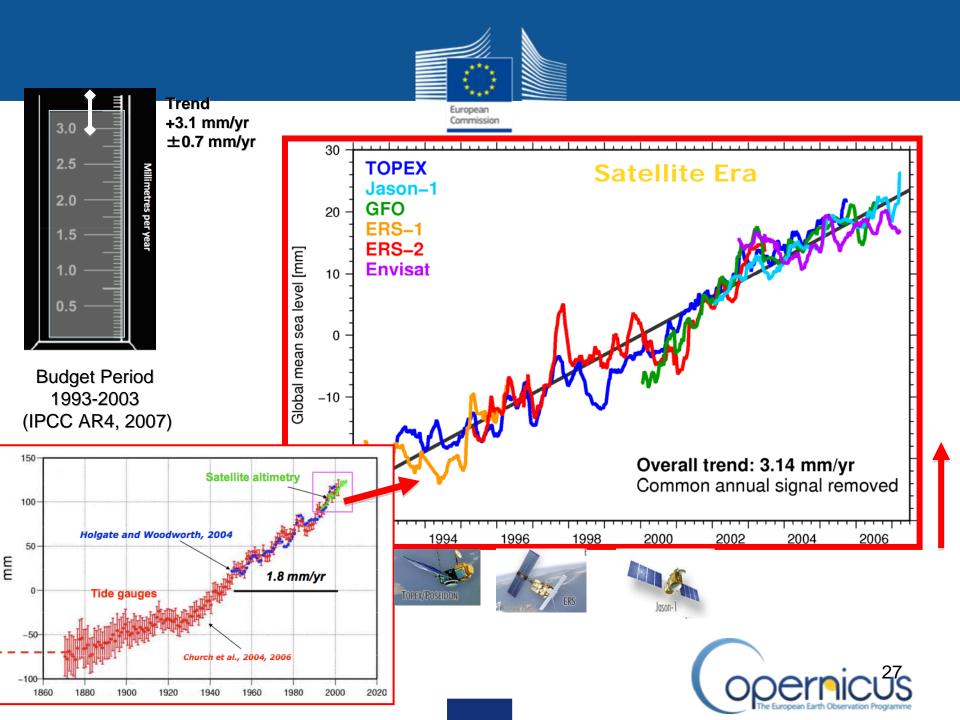
Local Road

Bridge


Points of Interest

- Transportation
- Institutional
- Educational
- Medical
- * Religious
- Other




Not Affected

Not analyzed due to cloud haze

5 HR layers under development (GIS model approach) Example from Alpine test site

Downstream sector analysis

A number of non-Space sectors benefit from the programme.

Copernicus can be seen as a driving force creating highly skilled job opportunities and can have indirect effects on the wider economy by 2030.

Downstream activities can adapt Copernicus products to regional needs.

Agriculture Value Chain and EO Contribution

Contribution by EO downstream service:

Precision Farming

Deciding Crop Type, Land Area...

- Geolocation of data on soil and past crop
- Mapping variability
- Decision about crop type, land area...

Planting

Optimisation of seed density Growing

Optimisation of field inputs (water, fertilisers, pesticides)

Harvesting and Storing

- Gathering crops from the field
- Quality control and food safety

Post-Harvest Management

- Packaging
- Transportation
- Marketing

Case study: commercial precision farming "FARMSTAR"

Non-Life Insurance Value Chain and EO Contribution

Product Management

 Design, definition and testing of products

Marketing and Pre-Sales Analysis

 Market research, branding and analysis

Underwriting and risk management

 Risk analysis, acceptance, inspection and monitoring, quotation validation, loss control

Policy acquisition and servicing

 Quote and policy issuance, policy renewal and reinstatement

Claims management

 Claims registration, validation, assessment adjudication and subrogation, fraud management.

Case study: "PanGeo"

Oil and Gas Value Chain and EO Contribution

Extraction

Exploration

Complement regional and detailed geological studies

 Complement seismic planning studies and terrain evaluation

Production

- Planning and monitoring of facilities and infrastructures
- · Land cover mapping
- Environmental monitoring
- Ground movement monitoring

Processing and Transportation

- Moving crude oil to refineries and consumers with tankers, trucks and pipelines
- Treating gas to be sent to markets and move it with pipelines and tankers

Refining (for crude oil only)

 Converting crude oil into final products

Marketing

 Distributing and selling final products

Case study: "Fugro NPA"

Water transportation Value Chain and EO Contribution

Shipment origination and routing

Container provision

Terminal control and operation

Inland delivery

Key functions

- Customer service
 and sales
- Shipment routing
- Capacity procurement
- Ownership of containers
- Storage and maintenance
- Repositioning
- Ownership and operation of vessel

Vessel

provision and

operation

- More efficient routes leading to fuel savings
- Reduced impact of oil spills

operation

- Shipment loading and unloading
- Container handling
- Improved port management leading to less accidents

- Control of trucks
- Ownership of railroads
- Container handling

Expected benefits

Sources: MergeGlobal, STP Analysis

Case study: "Sea Ice Routing"

