

CISAS

Space Research at CISAS - University of Padua

P. Benvenuti

- •Solar System Physics
- Astronomy and Astrophysics
- Space systems
- Space Propulsion
- •GPS Geodesy and Geophysics
- Technology Transfer

Torino, NEREUS, Oct. 19th 2011

Nautica Celeste, da *IX Ecloghe*, 1962

Vorrei renderti visita nei tuoi regni longinqui o tu che sempre fida ritorni alla mia stanza dai cieli, luna, e, siccom'io, sai splendere unicamente dell'altrui speranza.

Andrea Zanzotto (1921 – 2011)

Center for Studies and Activities for Space "G. Colombo" - Start date January '91.

CISAS consitution

- CISAS includes more that 40 members, plus ~ 50 among technicians, graduate fellows and engineers with external and internal post-doc grants.
- Member Departments make available their own laboratories and infrastructures to CISAS staff.
- New equipment and instrumentation is continuously acquired by the Center.
- The fundation of CISAS rests on the tradition in Space Research developed at the University over the last 30 years and initiated by

Prof. Giuseppe "Bepi" Colombo

Prof Giuseppe (Bepi) Colombo

CISAS' mission

CISAS, by means of space studies and research, aims at the interdisciplinary formation of Graduates and Researchers with solid knowledge in the fields of:

- fundamental sciences
- applied research
- industrial and managerial activities.

National and International Collaboration

Main International programs

Mars Express, Venus Express (ESA) Rosetta (ESA) Mars Sample Return (NASA-CNES-ASI), International Space Station (NASA-ESA-ASI, JAXA), Cassini Huygens (ESA-NASA-ASI) Bepi Colombo (ESA-ASI, JAXA) Exomars (ESA-ASI, NASA) Solar Orbiter (ESA-ASI, NASA) LaPlace (ESA-ASI, NASA)

Present Missions

CASSINI-HUYGENS

- HASI Experiment
- Thermo mechanical Analysis for OMEGA-VIMS

PFS for MARS EXPRESS and VENUS EXPRESS

 Infrared Spectrometer for research of pre-biotic and biotic substances in Mars and Venus atmospheres

ROSETTA

- WAC Osiris Telescope
- OSIRIS Meccanisms
- Thermo mechanical studies and design for VIRTIS
- A/B Phases Project for GIADA

Stratospheric Balloon Campaigns

- Trapani Italian ASI base
- Kiruna Swedish base

Future Missions

CISAS

Bepi Colombo: mission to Mercury (ESA)

SIMBIO-SYS System Management

Mars Exploration Program (ESA-NASA)

Drilling system testing

Entry Descent and Landing instrumentation

LaPlace (ESA-NASA)

High Resolution Telescope

- Sounding Radar Antenna (ESA Tender won)
- Solar Orbiter METIS (ESA)

Solar coronograph

CISAS Space Robotics

• Free-floating robot

- Laboratory mockup (2D, 3D)
- Parabolic flight environmental testing

IPSE for "Mars Sample Return" (NASA JPL)

- Robotic arm
- Micropositioning system
- Gimbal for Space Telescope
- Autonomous Landing and Precision Landing Test Facility
- (collaboration with Gavazzi Space)
- Autonomous soil penetrator MOLE (ESA Contract in coll. with Tecnomare)
- Biomimetic Robot
 - Walbot (collaboration with Carnegie-Mellon University)
 - Gaia
- PiezoRobot

SIMBIO-SYS

Cassini Huygens Missione: Saturn system Exploration

Rosetta Mission

CISAS Contribution

- WAC Telescope
- OSIRIS Mechanisms
- VIRTIS Spectrometer
- Lander: Solar Panel Qual

Wide Angle Camera Telescope

Olymp us Mons

Hecates Tholus

_ Bysium Mons

Viking 2

Abor Tholus

, Isidis Pla nitia

, Terra Cimmeria

Mars "seen" by OSIRIS

Some Results

Mars atmosphere seen by OSIRIS

Some Results (Rosetta WAC)

Robotics and Automation

Mole for Mars Exploration

payload & sensor

Module 2:

Electronic & subsystem for holding

The Mole Ground Demonstrator is intended to be a test bench to develop and prove in terrestrial conditions the soil penetration technology for a future Subsurface Explorer (SUBEX), which will perform a deep excavation and analyse, by means of an on board specialized instrumentation package, at different depths the Mars subsoil.

The demonstrator has been developed in cooperation with Tecnomare Spa. (European Space Agency Invitation to tender)

Module 1:

sub system for drilling operation

The NAVIGATOR System

Carlo Gavazzi Space SpA

Image Acquisition

Image Matching

Terrain Reconstruction

Landing Site Selection

Trajectory Control

GEOPHYSICS & SPACE GEODESY

→ GPS Geodesy

- Data acquisition for permanent regional geodetic networks.
- Monitoring of cinematics and dynamics of alpine slopes with GPS tecniques.

→ Measure of earthly gravitational field

Italian Working Group for the GOCE Mission (ESA).

Hypervelocity and Aerospace Propulsion

Torino, NEREUS, Oct. 19th 2011

CISAS Hypervelocity Impact Facility

CISAS

The CISAS hypervelocity launcher is unique in the world

- Complete diagnostics of high-velocity phenomena (high-speed pictures, measurement of shocks and fast transient vibrations, electromagnetic emission detectors)
- Numerical tools for high speed transient gas-dynamics (CFD)
- Numerical tools for impact phenomena (SPH, FEM, FEA)

CISAS Hypervelocity Impact Facility

→ MAIN PERFORMANCE

Speed range
Projectile mass
Shot frequency
Barrel diameter
Barrel length
Shot frequency
150 mg @ 6 k

0.3 - 6.0 km/s 150 mg @ 6 km/s - 500 g @ 300 m/s up to 10 shots/day r 4.76 or 6 mm 1.5 - 2.5 m

CISAS Hypervelocity Impact Facility

Hypervelocity

CISAS

Aerospace Propulsion

Electrical PropulsionHybrid Propulsion

Torino, NEREUS, Oct. 19th 2011

HPH.com Project Helicon Plasma Hydrazine. COmbined Micro

Space plasma thrusters based on helicon antennas.

- → Extreme scalability
 - Small pushes for position control and satellite-formations attitude
 - Primary propulsion for interplanetary probes.
- High-efficiency / low-thrust (plasma only)
- Low-efficiency / high-thrust (plasma-hydrazine).
- \rightarrow End results:
 - Operating technology demonstrator
 - Numerical code

Electrical Propulsion

Variable Specific Impulse Plasma Thruster

One system including primary propulsion and attitude control

Constant power throttling: Thrust and specific impulse variation Generation and heating of plasma avoiding electrode erosion Specific impulse variation between 3000-10000 s

LEO-GEO transfer mass savings

Interplanetary trajectory towards inner and outer planets

Low power used (max 10 kW)

Hybrid PIC simulation of plasma source and plasma acceleration (Ion beams) for industrial applications

European FP7 tender won (3.5 M€)

Hybrid-thrusters

Main aspect of hybrid thrusters

- Low development costs
- No safety requirements
- Thrust throttability
- No storage issues
- Higher specific impulse than solid (280 s vs 230 s for solid thruster)

CISAS Activities

- Numerical modelling of thruster
- Thruster ground test-bed
- Development of mini-University-Launcher for student training

Robotics and space image recostruction applied to shoes' industrial manifacture

Torino, NEREUS, Oct. 19th 2011

Automatic Modelling & Cutting

3D Model

Algorithm validation

2D flattening for leather or synthetic fabric cutting

Prototype