

European Seminar on "Technologies from Space Exploration"

Interests and expectations of NEREUS districts and local clusters

LOMBARDIA AEROSPACE CLUSTER

SECTOR PROFILE

DISTRETTO AEROSPAZIALE LOMBARDO

Snapshot of Lombardia Aerospace Cluster

Update 2010

1.7 billion Euro xot Dardo

38 %

Share on Italian aerospace export

PRODUCTS

- Trainer aircraft
- •Helicopters and vertical flight technologies
- •Satellites and scientific rayldads •Avionics and system integration
- Systems and Equipment
- Mechanicai component and subsystems
- Tools and systems
- bardo •Special materials
- Services

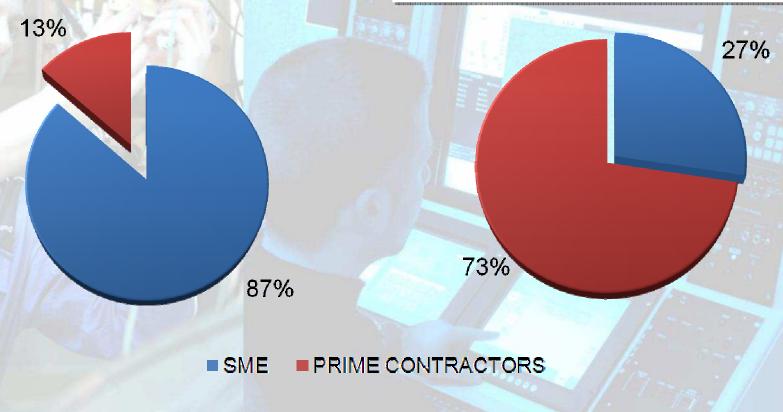
MAIN TECHNOLOGIES

distretto

aerospaziale,

- Structures
- Mechanics
- •Metal, composite, Special materials O
 •Electronic and electric
- Structural design methodologies
- Acoustic and vibration methodologies
- •Information Technology
 •Engines Ombologies Other technologies

COMPANIES


DISTRETTO AEROSPAZIALE LOMBARDO

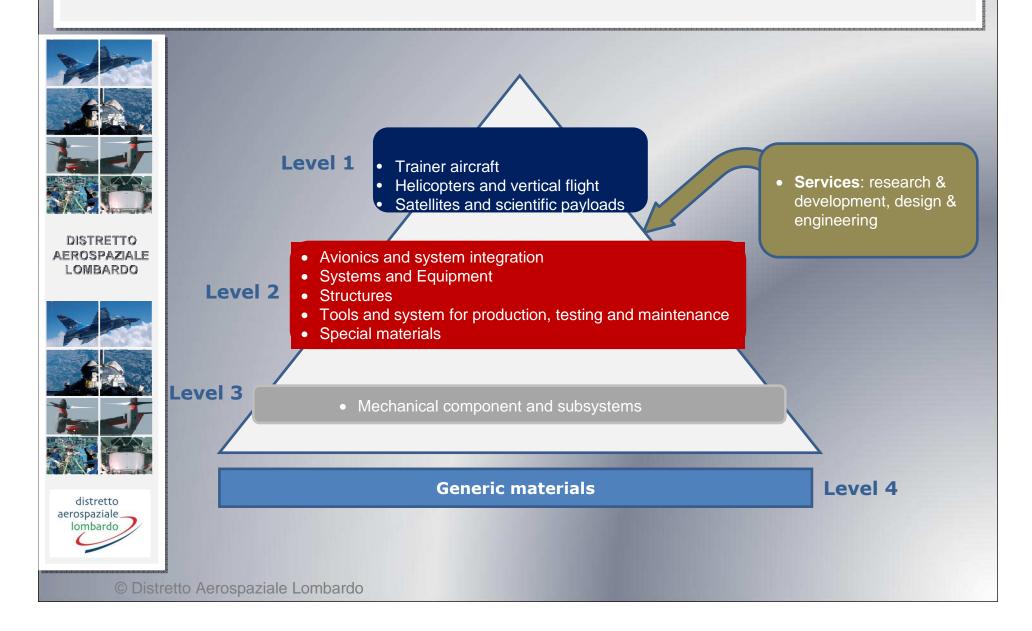
Employees distribution by company dimension

© Distretto Aerospaziale Lombardo

Source: Distretto Aerospaziale Lombardo

PRIME CONTRACTORS

DISTRETTO **AEROSPAZIALE** LOMBARDO



LOMBARDIA AEROSPACE CLUSTER: TECHNOLOGICAL COMPETENCE

EVOLUTION: FROM A SECTOR TO A CLUSTER

MISSION OF LOMBARDIA AEROSPACE CLUSTER

DISTRETTO AEROSPAZIALE LOMBARDO

ABOUT 75 MEMBER COMPANIES ONE MAIN GOAL:

Promote the autonomous growth of the SMEs

By means of

Encouraging the growth of Supply Chain through the support to innovation and the creation of best practices

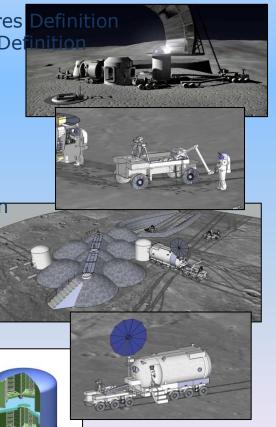
- Supporting Internationalization and Market
- Seizing opportunities for collaboration
- Developing Education and training
 Catching Finance opportunities

MAIN ACTIVITIES

How to reach the goals: Working Groups

- Nucleo Tecnico Scientifico (NTS): coordinate R&I activities, covers the whole range of products, services, technologies
- Space: collaborate with NTS Carategic (olds of space programmes (ex.: NEREUS)
- practices (ex.: KPI:; LEAN; E-scouting; Web-site...)
- Internationalisation Marketing: links and networking (EACP; Air show, fairs...)
- Education & Training:policies, "design" of E&T initiatives;
 M&A master LIUC
- ☐ **Funding**: catching opportunities steering new ones

DISTRETTO AEROSPAZIALE LOMBARDO



Mission Analysis:

- Planetary Surface Exploration Missions and Architectures Definition
- International Exploration Scenarios Identification and Definition
- Mission Planning and Scheduling
- Space and Planetary Environments Knowledge

System Design:

- System and subsystem Design
- Interplanetary and Planetary Human Habitat
- Planetary Surface Scientific Exploration, Transportation and Resources Supply Systems
- Operations Definition
- Software Development
- Specific Competences on :
 - Power generation and handling
 - In-situ Resource Utilization
 - Guidance, Navigation and Control
 - Precision Landing
 - Thermal Control
 - Mechanics
 - Robotics

Technological Development:

- Innovative Technologies Studies
- Potential Impacts on Terrestrial Technologies and Applications
- Breadboard Definition and MAIT
- Specific Developed Technologies:
- Regenerative Fuel Cell
- Oxygen Extraction from Lunar Regolith
- Martian Sample Canister Capture Mechanism
- Radiation Protection for Human Applications
- Cross-applications Vision-based GNC software Platform and Simulator
- X-band mirrors development
- Adaprive Optics
- Diffraction and Olographic Optics

Test Facilities:

- Test Setup Design and MAIT
- Specific Developed Facilities:
- Precision Landing Ground Test Facility
- Impacts Material Characterization Facility

DISTRETTO AEROSPAZIALE

LOMBARDO

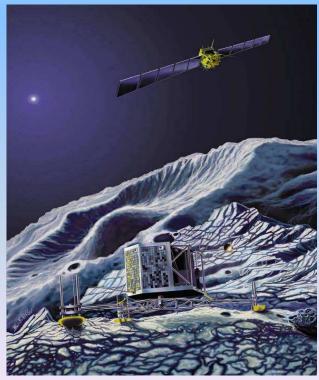
Developed in the frame of an ESA programme the Dextrous Robot System (DEXARM) is a lightweight robotic arm to be used for diverse space robotics applications in which the manipulation/intervention tasks were originally conceived for humans.

The applications are typically:

- external or internal servicing of Space Station platforms (e.g. EUROBOT)
- robotics for planetary exploration (e.g. AURORA).

Dextrous Robot Arm configuration

Dexarm Joint integrated with carbon fibre limb


DISTRETTO AEROSPAZIALE LOMBARDO

Sample, Drill and Distribution system (ASI)

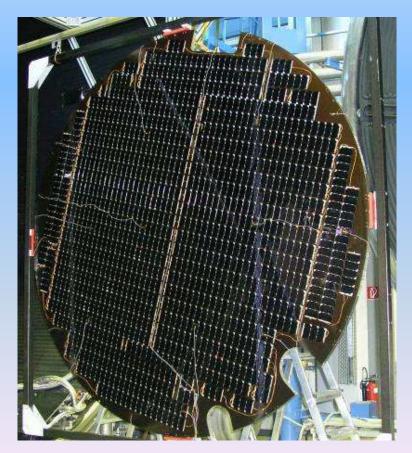
- Installed on the lander module of Rosetta
- Launch 2004, presently in flight, expected landing date 2014

Rosetta mission artist's view

DISTRETTO AEROSPAZIALE LOMBARDO

First mission of the AURORA planetary exploration programme of ESA: ExoMars Drill

- Drill: soil and subsoil sample collection and delivery to the Sample Preparation & Distribution System (SPDS)
- MA_MISS (MArs Multispectral Imager for Subsurface Studies): VIS/IR spectrometer embedded into the Drill for analyzing the internal surface of the borehole generated by the Drill
- Drill & SPDS Control System: electronics and software to drive the Drill and the SPDS mechanisms


DISTRETTO AEROSPAZIALE LOMBARDO

Solar generators electrical network for several Space Exploration missions

- Rosetta (more than 12 kW installed on Orbiter and Lander) with Silicon Low Intensity Low Temperature solar cells, specifically developed for the comet environment – launched 2004
- Herschel and Plank (overall 6 kW installed) with Triple Junction GaAs solar cells, 27% efficiency – launched 2009
- GAIA (about 4 kW installed) with Triple Junction GaAs solar cells, 28% efficiency – launch planned 2013

From Space to Everyday Life

DISTRETTO AEROSPAZIALE LOMBARDO

Regenerative Fuel Cells:

- Benefits From Space Technologies
- PEM technology adapt to a wide spread of applications
- High Performance
- · High reliability and lifetime
- Closed regenerative configuration
- Main Terrestrial Applications
 - Stationary (Electric power production, Distributed power generation, Back-up power source, Combined hot water production)
 - Mobile (Automotive, Unmanned aerial vehicles, Water vehicles, submarines, bathyscaphe)
 - Portable (Consumer Electronics, Weather stations, APUs)

Vision-based Guidance, Navigation and Control:

- Benefits From Space Technologies
- Autonomous terrain identification and reconstruction
- Autonomous dynamics and attitude evaluation
- Advanced vision-based GNC algorithms
- Main Terrestrial Applications
- GPS-less environments
- UAV (e.g. fire monitoring)
- Support for manned helicopter landing

CONTACTS

info@aerospacelombardia.it